New families of Super Mean Graphs

Author's: Dr. A. Selvam Avadayappan, R. Sinthu

Abstract - Let G be a (p, q) graph and let $f: V(G) \rightarrow \{1, 2, ..., p+q\}$ be an injection. For each edge e = uv, let $f^*(e)=(f(u)+f(v))/2$ if f(u)+f(v) is even and $f^*(e) = ((f(u)+f(v))+1)/2$ if f(u)+f(v) is odd. Then f is called a super mean labeling if $f(V) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, 3, ..., p+q\}$. A graph that admits a super mean labeling is called a super mean graph.

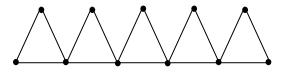
In this paper, we prove that $C_n+v_1v_3$ (n≥4), Cube Q_3 , Octahedron, the balloon of the triangular snake $T_n(C_m)$ n≥2, m≥3, m≠4, (2G, v_1 , v_2) are super mean graphs.

_ _ _ _ _ _ _ _ _ _ _ _

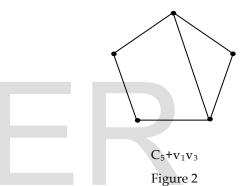
Key words - labeling, mean labeling, super mean labeling, mean graph, super mean graph.

1 INTRODUCTION

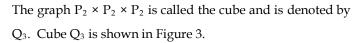
hroughout this paper, by a graph we mean a finite, undirected, simple graph. Let G(V,E) be a graph with p vertices and q edges. For notations and terminology we follow [2]. Path on n vertices is denoted by Pn and a cycle on n vertices is denoted by C_n . A triangular snake T_n is obtained from a path v_1, v_2, \ldots, v_n by joining v_i and v_{i+1} to a new vertex u_i for $1 \le i \le n-1$, that is, every edge of a path is replaced by a triangle C_3 . For example, T_6 is shown in Figure 1.

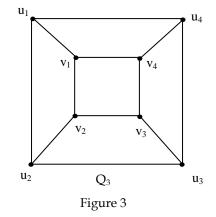


The graph Cn+v1v3 is obtained from the cycle Cn: $v_1v_2 \dots v_nv_1$ by joining the vertices v_1 and v_3 by means of an edge. For example, $C_5+v_1v_3$ is shown in Figure 2.



_ _ _ _ _ _ _ _ _ _

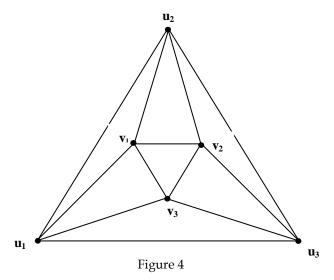




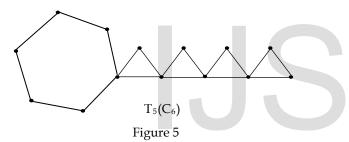
An octahedron is a polyhedron with 8 faces. An octahedron is shown in Figure 4.

Associate Professor, Department of Mathematics, V,H,N.S.N. College, Virudhunagar, Tamil Nadu, India.
 E-mail: selvam_avadayappan@yahoo.co.in

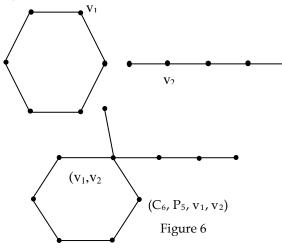
Research Scholar, Department of Mathematics, V.H.N.S.N. College, Virudhunagar, Tamil Nadu, India.
 E-mail: sinthu_maths@yahoo.co.in



The balloon of the triangular snake $T_n(C_m)$ is the graph obtained from C_m by identifying an end vertex of the basic path in T_n at a vertex of C_m . For example, $T_5(C_6)$ is shown in Figure 5.



Let G_1 and G_2 be two graphs with fixed vertices v_1 and v_2 respectively. Then (G_1, G_2, v_1, v_2) is the graph obtained from G_1 and G_2 by identifying the vertices v_1 and v_2 . For example, the graph (C_6, P_5, v_1, v_2) is shown in Figure 6.



If $G_1 = G_2$, then (G, G, v_1, v_2) is denoted by $(2G, v_1, v_2)$

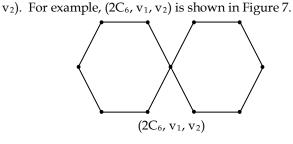


Figure 7

A vertex labeling of G is an assignment $f : V(G) \rightarrow$ {1, 2, 3, . . . , p + q} be an injection. For a vertex labeling f, an induced edge labeling f* is defined by

$$f^{*}(e) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) \text{ and } f(v) \text{ are of same parity} \\ \frac{f(u) + f(v)}{2} & \text{otherwise} \\ 2 \end{cases}$$

A vertex labeling f is called a super mean labeling of G if its induced edge labeling $f(V) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, 3, ..., p + q\}$. If a graph has a super mean labeling, then we say that G is a super mean graph.

The concept of mean labeling was first introduced by S. Somasundaram and R. Ponraj [7]. They have studied in [5, 6, 7, 8] the mean labeling of some standard graphs.

The concept of super mean labeling was first introduced by R. Ponraj and D.Ramya [3]. They have studied [3, 4] the super meanness of some standard graphs like P_n, C_{2n+1}, n ≥ 1, K_n(n ≤ 3), K_{1,n} (n ≤ 3), T_n, C_m \cup P_n(m≥3, n≥1), B_{m,n} (m=n, n+1) etc. They have proved that the union of two super mean graphs is also a super mean graph and C4 is not a super mean graph. Also they determined all super mean graph of order ≤ 5. R. Vasuki and A. Nagarajan [10] proved that the super meanness of the graph C_{2n} for n≥3, the H-graph, carona of a H-graph, 2 – carona of a H-graph, carona of cycle C_n for n≥3, mC_n – snake for m≥1, n≥3 and n ≠ 4 and C_m×P_n for m = 3, 5. In [1], the meanness of the following graphs have been proved: C_m×P_n; the caterpillar P(n,2,3); Q₃×P_{2n}; carona of a H – graph; mC₃;

 $C_n \cup K_{1,m}$ (n≥3, 1≤m≤4); m $C_3 \cup K_{1,m}$ (1≤m≤4); the dragon $P_n(C_m)$ and some standard graphs.

IJSER © 2016 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 ISSN 2229-5518

In this paper, we prove the super meanness of the graph $C_n+v_1v_3$ (n≥4), Cube Q_3 , Octahedron, the balloon of the triangular snake $T_n(C_m)$ n≥2, m≥3, m≠4, (2G, v_1 , v_2).

2 SUPER MEAN GRAPHS

Theorem 2.1 $C_n + v_1 v_3$ is a super mean graph for $n \ge 4$.

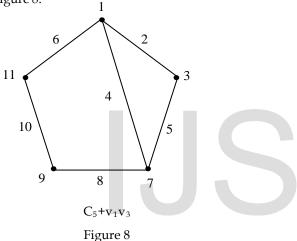
Proof Let C_n be a cycle with vertices $v_1, v_2, v_3, \ldots, v_n$ and edges $e_1, e_2, e_3, \ldots, e_n, e_{n+1}$.

Define
$$f: V(C_n+v_1v_3) \rightarrow \{1, 2, ..., n+1\}$$
 as

follows:

Case 1 when n is odd, n = 2m+1, m = 2, 3, 4, ...

For m = 2, a super mean labeling of $C_5+v_1v_3$ is shown in Figure 8.



For $m \ge 3$,

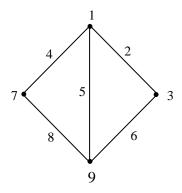
$$\begin{split} f(v_i) &= 2i\text{-}1, \, 1 \leq i \leq 2; \qquad f(v_{j+2}) \, = \, 2j\text{+}5, \, \, 1 \, \leq \, j \, \leq \, 2; \\ f(v_{k+4}) &= 4k\text{+}8, \, 1 \leq k \leq \text{m-}2; \\ f(v_{m+1+2}) &= 4m\text{-}4l\text{+}7, \, 1 \leq l \leq \text{m-}2; \\ f(v_{2m+1}) &= 10. \end{split}$$

Then the induced edge labels are

$$\begin{aligned} f^{*}(e_{1}) &= 2; & f^{*}(e_{i}) = 3i \cdot 1, 2 \leq i \leq 4; \\ f^{*}(e_{j+4}) &= 2(2j+5), 1 \leq j \leq m \cdot 2; \\ f^{*}(e_{m+k+2}) &= 4m \cdot 4k + 5, 1 \leq k \leq m \cdot 2; \\ f^{*}(e_{2m+1}) &= 6; & f^{*}(v_{1}v_{3}) = 4. \end{aligned}$$

Case 2 when n is even, n = 2m, m = 2, 3, 4, ...

For m = 2, a super mean labeling of C_4 + v_1v_3 is shown in Figure 9.



For $m \ge 3$,

$$\begin{split} f(v_i) &= 2i\text{-}1, \, 1 \leq i \leq 2; \qquad f(v_3) = 7; \\ f(v_{j+3}) &= 4j\text{+}5, \, 1 \leq j \leq \text{m-}1; \end{split}$$

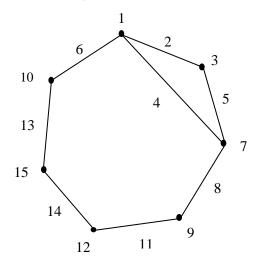
$$f(v_{m+k+2}) = 4m-4k+2, 1 \le k \le m-2$$

Then the induced edge labels are

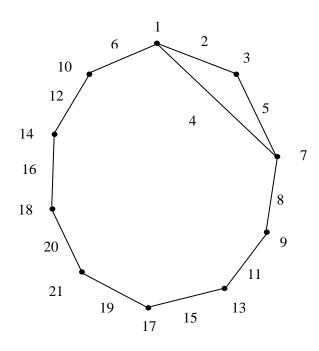
$$\begin{aligned} f^*(e_1) &= 2; & f^*(e_i) = 3i\text{-}1, \, 2 \leq i \leq 3; \\ f^*(e_{j+3}) &= 4j\text{+}7, \, 1 \leq j \leq m\text{-}2; \\ f^*(e_{m+k+1}) &= 4m\text{-}4k\text{+}4, \, 1 \leq k \leq m\text{-}2; \\ f^*(e_{2m}) &= 6; & f^*(v_1v_3) = 4. \end{aligned}$$

Clearly f is a super mean labeling of $C_n + v_1 v_3$.

For example, the super mean labelings of $C_7+v_1v_3$ and $C_{10}+v_1v_3$ are shown in Figure 10.



(a) $C_7 + v_1 v_3$



(b) C₁₀+v₁v₃ Figure 10

Theorem 2.2 Cube Q_3 is a super mean graph. **Proof** Let u_1 , u_2 , u_3 , u_4 and v_1 , v_2 , v_3 , v_4 be the vertices of Q_3 .

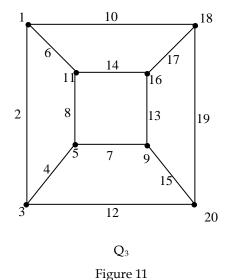
Define $f: V(Q_3) \rightarrow \{1, 2, 3,, 20\}$ as follows:	
$f(u_i) = 2i-1, 1 \le i \le 2;$	$f(u_3) = 20;$
$f(u_4) = 18;$	$f(v_1) = 11;$
$f(v_i) = 4i-3, 2 \le i \le 3;$	$f(v_4) = 16.$

Then the induced edge labels are

$$\begin{array}{ll} f^*(u_1u_2)=2; & f^*(u_iu_{i+1})=7i\text{-}2, 2\leq i\leq 3;\\ f^*(u_1u_4)=10; & f^*(v_1v_2)=8;\\ f^*(v_iv_{i+1})=6i\text{-}5, 2\leq i\leq 3; & f^*(v_1v_4)=14;\\ f^*(u_1v_1)=6; & f^*(u_2v_2)=4;\\ f^*(u_3v_3)=15; & f^*(u_4v_4)=17. \end{array}$$

Clearly f is a super mean labeling of Q_3 .

For example, a super mean labeling of Q_3 is shown in Figure 11.



Theorem 2.3 Octahedron is a super mean graph.

Proof Let u_1 , u_2 , u_3 and v_1 , v_2 , v_3 be the vertices of the octahedron.

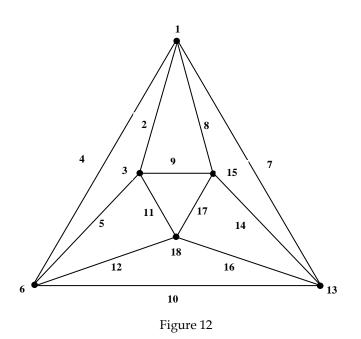
Define
$$f: V(G) \rightarrow \{1, 2, 3, ..., 18\}$$
 as follows:
 $f(u_1) = 6;$ $f(u_2) = 1;$
 $f(u_3) = 13;$ $f(v_1) = 3;$
 $f(v_2) = 15;$ $f(v_3) = 18.$

Then the induced edge labels are

$$\begin{aligned} f^*(u_i u_{i+1}) &= 3i+1, \ 1 \le i \le 2; \\ f^*(v_i v_{i+1}) &= 8i+1, \ 1 \le i \le 2; \\ f^*(v_1 v_3) &= 11; \\ f^*(u_i v_i) &= 3i+2, \ 1 \le i \le 2; \\ f^*(u_3 v_3) &= 16; \\ f^*(v_1 u_2) &= 2; \\ f^*(v_2 u_3) &= 14; \\ f^*(v_3 u_1) &= 12. \end{aligned}$$

Clearly f is a super mean labeling of the Octahedron.

For example, a super mean labeling of the Octahedron is shown in Figure 12.



Theorem 2.4 $T_n(C_m)$ is a super mean graph for $n \ge 2$, $m \ge 3$, $m \ne 4$.

Proof Let $v_1, v_2, v_3, \ldots, v_m$ be the vertices of C_m and u_1 , u_2, u_3, \ldots, u_n ; $w_1, w_2, w_3, \ldots, w_{n-1}$ be the vertices of T_n .

Then define g on $T_n(C_m)$ as follows:

Case 1 when m is even, m = 2k, k = 3, 4, 5, ...

$$\begin{split} g(v_i) &= f(v_i), \ 1 \leq i \leq m; \qquad g(u_i) = 2m + 5i - 5, \ 1 \leq i \leq n; \\ g(w_i) &= 2m + 5i - 3, \ 1 \leq i \leq n - 1. \end{split}$$

Then the induced edge labels are

$$\begin{split} g^*(e_i) &= f(e_i), 1 \leq i \leq m; \\ g^*(u_i u_{i+1}) &= 2m + 5i - 2, 1 \leq i \leq n - 1; \\ g^*(u_i w =) &= 2m + 5i - 4, 1 \leq i \leq n - 1; \\ g^*(w_i u_{i+1}) &= 2m + 5i - 1, 1 \leq i \leq n - 1. \end{split}$$

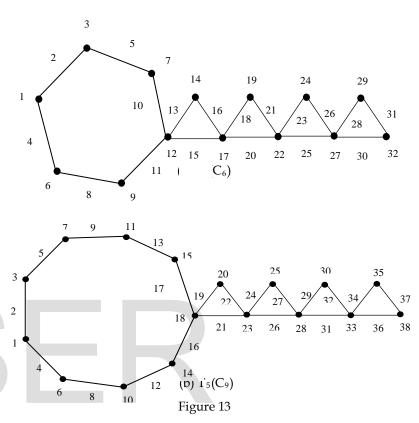
Case 2 when m is odd, m = 2k + 1, k = 2, 3, 4, ... $g(v_i) = f(v_i)$, $1 \le i \le m$; $g(u_i) = 2m+5i-5$, $1 \le i \le n$; $g(w_i) = 2m+5i-3$, $1 \le i \le n-1$.

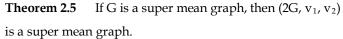
Then the induced edge labels are.

$$\begin{split} g^*(e_i) &= f(e_i), \, 1 \leq i \leq m; \\ g^*(u_i u_{i+1}) &= 2m + 5i - 2, \, 1 \leq i \leq n - 1; \\ g^*(u_i w_i) &= 2m + 5i - 4, \, 1 \leq i \leq n - 1; \\ g^*(w_i u_{i+1}) &= 2m + 5i - 1, \, 1 \leq i \leq n - 1. \end{split}$$

Clearly g is a super mean labeling of $T_n(C_m)$.

For example, the super mean labelings of $T_5(C_6)$ and $T_5(C_9)$ are shown in Figure 13.





Proof Let u_1 , u_2 , u_3 , u_4 and v_1 , v_2 , v_3 , v_4 be the vertices of G and w_1 , w_2 , w_3 , w_4 and x_1 , x_2 , x_3 , x_4 be the vertices of (2G, v_1 , v_2).

Then define g on $(2G, v_1, v_2)$ as follows:

$$\begin{split} g(u_i) &= f(u_i), \, 1 \leq i \leq 4; \qquad g(v_i) = f(v_i), \, 1 \leq i \leq 4; \\ g(w_i) &= f(u_i) + p + q - 1, \, 1 \leq i \leq 4; \\ g(x_i) &= f(v_i) + p + q - 1, \, 1 \leq i \, \leq 4. \end{split}$$

Then the induced edge labels are

$$\begin{split} g^{*}(e_{i}) &= f(e_{i}), \, 1 \leq i \leq 4; \qquad g^{*}(e_{j}) = f(e_{j}), \, 1 \leq j \leq 4; \\ g^{*}(e_{k}) &= f(e_{k}), \, 1 \leq k \leq 4; \\ g^{*}(e_{l}) &= f(e_{i}) + p + q - 1, \, 1 \leq i, l \leq 4; \end{split}$$

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 ISSN 2229-5518

 $g^*(y_i) = f(e_i) + p + q - 1, 1 \le i, j \le 4;$

$$g^*(z_i) = f(e_k) + p + q - 1, 1 \le i, k \le 4.$$

Clearly g is a super mean labeling of $(2G, v_1, v_2)$.

For example, a super mean labeling of $(2Q_3, v_1, v_2)$ is shown in Figure 14.

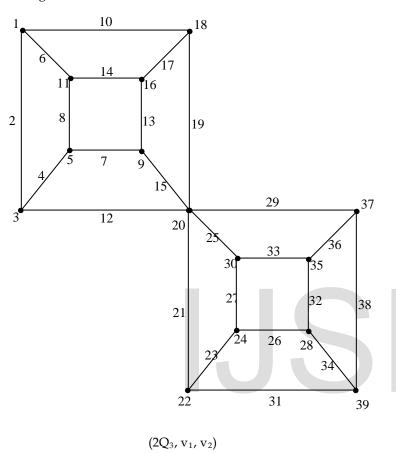


Figure 14

ACKNOWLEDGEMENT

We would like to thank the reviewers for their valuable suggestions.

REFERENCES

 Selvam Avadayappan and R. Vasuki, Some results on Mean Graphs, International Journal of Physical Sciences, 21 (M) (2009), 273 – 284.

- [2] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory, Springer Verlag (2000).
- [3] R. Ponraj and D. Ramya, Super Mean Labeling of Graphs, Preprint.
- [4] R. Ponraj and D. Ramya, On Super mean graphs of order ≤ 5, Bulletin of Pure and Applied Sciences, (Section E Maths and Statistics) 25E(2006), 143 148.
- [5] R. Ponraj and S. Somasundaram, Further results on mean graphs, Proceedings of Sacoeference, August 2005, 443 – 448.
- [6] R. Ponraj and S. Somasundaram, Mean graphs obtained from mean graphs, Journal of Discrete Mathematical Sciences and Cryptography, 11 (2) (2008), 273 – 284.
- S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science letter, 26 (2003), 210 – 213.
- [8] S. Somasundaram and R. Ponraj, On mean graphs of order ≤ 5, Journal of Decision and Mathematical Sciences 9 (1-3) (2004), 48 – 58.
- [9] D. Ramya, R. Ponraj and P. Jeyanthi, Super mean labeling of graphs, Ars Combinatoria, (To appear).
- [10] R. Vasuki and A. Nagarajan, Some Results on Super Mean Graphs, International Journal of Combin., Vol. 3(2009), 82-96.

697