New families of Super Mean Graphs

Author's: Dr. A. Selvam Avadayappan, R. Sinthu

Abstract - Let G be a (p, q) graph and let $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ be an injection. For each edge $e=u v$, let $f *(e)=(f(u)+f(v)) / 2$ if $f(u)+f(v)$ is even and $f^{*}(e)=((f(u)+f(v))+1) / 2$ if $f(u)+f(v)$ is odd. Then f is called a super mean labeling if $f(V) \cup\left\{f^{*}(e): e \in E(G)\right\}=\{1,2,3, \ldots, p+q\}$. A graph that admits a super mean labeling is called a super mean graph.

In this paper, we prove that $C_{n}+v_{1} v_{3}(n \geq 4)$, Cube Q_{3}, Octahedron, the balloon of the triangular snake $T_{n}\left(C_{m}\right) n \geq 2, m \geq 3, m \neq 4,\left(2 G, v_{1}, v_{2}\right)$ are super mean graphs.
Key words - labeling, mean labeling, super mean labeling, mean graph, super mean graph.

1 Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology we follow [2]. Path on n vertices is denoted by Pn and a cycle on n vertices is denoted by C_{n}. A triangular snake T_{n} is obtained from a path $v_{1}, v_{2}, \ldots, v_{n}$ by joining v_{i} and $\mathrm{v}_{\mathrm{i}+1}$ to a new vertex u_{i} for $1 \leq \mathrm{i} \leq \mathrm{n}-1$, that is, every edge of a path is replaced by a triangle C_{3}. For example, T_{6} is shown in Figure 1.

T6
Figure 1
The graph $\mathrm{Cn}+\mathrm{v} 1 \mathrm{v} 3$ is obtained from the cycle Cn : $\mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}$ by joining the vertices v_{1} and v_{3} by means of an edge. For example, $C_{5}+v_{1} v_{3}$ is shown in Figure 2.

- Associate Professor, Department of Mathematics, V,H,N.S.N. College, Virudhunagar, Tamil Nadu, India.
E-mail: selvam_avadayappan@yahoo.co.in
- Research Scholar, Department of Mathematics, V.H.N.S.N. College, Virudhunagar, Tamil Nadu, India.
E-mail: sinthu_maths@yahoo.co.in

The graph $P_{2} \times P_{2} \times P_{2}$ is called the cube and is denoted by Q_{3}. Cube Q_{3} is shown in Figure 3.

Figure 3
An octahedron is a polyhedron with 8 faces. An octahedron is shown in Figure 4.

Figure 4
The balloon of the triangular snake $\mathrm{T}_{\mathrm{n}}\left(\mathrm{C}_{\mathrm{m}}\right)$ is the graph obtained from C_{m} by identifying an end vertex of the basic path in T_{n} at a vertex of C_{m}. For example, $T_{5}\left(C_{6}\right)$ is shown in Figure 5.

Let G_{1} and G_{2} be two graphs with fixed vertices v_{1} and v_{2} respectively. Then $\left(G_{1}, G_{2}, v_{1}, v_{2}\right)$ is the graph obtained from G_{1} and G_{2} by identifying the vertices v_{1} and v_{2}. For example, the graph $\left(\mathrm{C}_{6}, \mathrm{P}_{5}, \mathrm{v}_{1}, \mathrm{v}_{2}\right)$ is shown in Figure 6.

If $G_{1}=G_{2}$, then $\left(G, G, v_{1}, v_{2}\right)$ is denoted by $\left(2 G, v_{1}\right.$, $\left.\mathrm{v}_{2}\right)$. For example, $\left(2 \mathrm{C}_{6}, \mathrm{v}_{1}, \mathrm{v}_{2}\right)$ is shown in Figure 7.

Figure 7
A vertex labeling of G is an assignment $f: V(G) \rightarrow$ $\{1,2,3, \ldots, p+q\}$ be an injection. For a vertex labeling f, an induced edge labeling f^{*} is defined by
$f^{*}(e)=\left\{\begin{array}{l}\frac{f(u)+f(v)}{2} \text { if } f(u) \text { and } f(v) \text { are of same parity } \\ \frac{f(u)+f(v)}{2} \text { otherwise }\end{array}\right.$
A vertex labeling f is called a super mean labeling of G if its induced edge labeling $f(V) \cup\left\{f^{*}(e): e \in E(G)\right\}=\{1$, $2,3, \ldots, p+q\}$. If a graph has a super mean labeling, then we say that G is a super mean graph.

The concept of mean labeling was first introduced by S. Somasundaram and R. Ponraj [7]. They have studied in $[5,6,7,8]$ the mean labeling of some standard graphs.

The concept of super mean labeling was first introduced by R. Ponraj and D.Ramya [3]. They have studied $[3,4]$ the super meanness of some standard graphs like $P_{n}, C_{2 n+1}, n \geq 1, K_{n}(n \leq 3), K_{1, n}(n \leq 3), T_{n}, C_{m} \cup P_{n}(m \geq 3$, $n \geq 1), B_{m, n}(m=n, n+1)$ etc. They have proved that the union of two super mean graphs is also a super mean graph and C4 is not a super mean graph. Also they determined all super mean graph of order ≤ 5. R. Vasuki and A. Nagarajan [10] proved that the super meanness of the graph $C_{2 n}$ for $\mathrm{n} \geq 3$, the H-graph, carona of a H-graph, 2 - carona of a H-graph, carona of cycle C_{n} for $n \geq 3, \mathrm{mC}_{n}$ - snake for $m \geq 1$, $\mathrm{n} \geq 3$ and $\mathrm{n} \neq 4$ and $\mathrm{C}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$ for $\mathrm{m}=3$, 5 . In [1], the meanness of the following graphs have been proved: $C_{m} \times P_{n}$; the caterpillar $\mathrm{P}(\mathrm{n}, 2,3) ; \mathrm{Q}_{3} \times \mathrm{P}_{2 n}$; carona of a $\mathrm{H}-$ graph; mC_{3};
$\mathrm{C}_{\mathrm{n}} \cup_{\mathrm{K}_{1, \mathrm{~m}}(\mathrm{n} \geq 3,1 \leq \mathrm{m} \leq 4) ; \mathrm{mC}_{3} \cup \mathrm{~K}_{1, \mathrm{~m}}(1 \leq \mathrm{m} \leq 4) \text {; the dragon }}$ $\mathrm{P}_{\mathrm{n}}\left(\mathrm{C}_{\mathrm{m}}\right)$ and some standard graphs.

In this paper, we prove the super meanness of the graph $C_{n}+v_{1} v_{3}(n \geq 4)$, Cube Q_{3}, Octahedron, the balloon of the triangular snake $\mathrm{T}_{\mathrm{n}}\left(\mathrm{C}_{\mathrm{m}}\right) \mathrm{n} \geq 2, \mathrm{~m} \geq 3, \mathrm{~m} \neq 4,\left(2 \mathrm{G}, \mathrm{v}_{1}, \mathrm{v}_{2}\right)$.

2 Super Mean Graphs

Theorem 2.1 $C_{n}+v_{1} v_{3}$ is a super mean graph for $n \geq 4$.
Proof Let C_{n} be a cycle with vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and edges $e_{1}, e_{2}, e_{3}, \ldots, e_{n}, e_{n+1}$.

$$
\text { Define } f: V\left(C_{n}+V_{1} V_{3}\right) \rightarrow\{1,2, \ldots, n+1\}_{\text {as }}
$$

follows:
Case 1 when n is odd, $\mathrm{n}=2 \mathrm{~m}+1, \mathrm{~m}=2,3,4, \ldots$
For $\mathrm{m}=2$, a super mean labeling of $\mathrm{C}_{5}+\mathrm{v}_{1} \mathrm{v}_{3}$ is
shown in Figure 8.

Figure 8

For $m \geq 3$,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq 2 ; \quad \mathrm{f}\left(\mathrm{v}_{\mathrm{j}+2}\right)=2 j+5,1 \leq \mathrm{j} \leq 2 ; \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{k}+4}\right)=4 \mathrm{k}+8,1 \leq \mathrm{k} \leq \mathrm{m}-2 ; \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{m}+1+2}\right)=4 \mathrm{~m}-4 \mathrm{l}+7,1 \leq 1 \leq \mathrm{m}-2 ; \\
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{~m}+1}\right)=10
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{e}_{1}\right)=2 ; \quad \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{i}}\right)=3 \mathrm{i}-1,2 \leq \mathrm{i} \leq 4 ; \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}+4}\right)=2(2 j+5), 1 \leq \mathrm{j} \leq \mathrm{m}-2 ; \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{m}+\mathrm{k}+2}\right)=4 \mathrm{~m}-4 \mathrm{k}+5,1 \leq \mathrm{k} \leq m-2 ; \\
& \mathrm{f}^{*}\left(\mathrm{e}_{2 \mathrm{~m}+1}\right)=6 ; \quad \mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{~V}_{3}\right)=4 .
\end{aligned}
$$

Case 2 when n is even, $n=2 m, m=2,3,4, \ldots$

For $m=2$, a super mean labeling of $C_{4}+v_{1} v_{3}$ is shown in Figure 9.

$\mathrm{C}_{4}+\mathrm{V}_{1} \mathrm{~V}_{3}$
Figure 9

For $m \geq 3$,

$$
\begin{aligned}
& f\left(v_{i}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq 2 ; \quad \mathrm{f}\left(\mathrm{v}_{3}\right)=7 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{j}+3}\right)=4 \mathrm{j}+5,1 \leq \mathrm{j} \leq \mathrm{m}-1 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{m}+\mathrm{k}+2}\right)=4 \mathrm{~m}-4 \mathrm{k}+2,1 \leq \mathrm{k} \leq m-2
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{e}_{1}\right)=2 ; \quad \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{i}}\right)=3 \mathrm{i}-1,2 \leq \mathrm{i} \leq 3 ; \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}+3}\right)=4 \mathrm{j}+7,1 \leq \mathrm{j} \leq \mathrm{m}-2 ; \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{m}+\mathrm{k}+1}\right)=4 \mathrm{~m}-4 \mathrm{k}+4,1 \leq \mathrm{k} \leq \mathrm{m}-2 ; \\
& \mathrm{f}^{*}\left(\mathrm{e}_{2 \mathrm{~m}}\right)=6 ; \quad \mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{3}\right)=4 .
\end{aligned}
$$

Clearly f is a super mean labeling of $C_{n}+v_{1} V_{3}$.
For example, the super mean labelings of $C_{7}+v_{1} v_{3}$ and $\mathrm{C}_{10}+\mathrm{v}_{1} \mathrm{v}_{3}$ are shown in Figure 10.

(b) $\mathrm{C}_{10}+\mathrm{v}_{1} \mathrm{~V}_{3}$

Figure 10
Theorem 2.2 C ube Q_{3} is a super mean graph.
Proof Let $u_{1}, u_{2}, u_{3}, u_{4}$ and $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices of Q_{3}.

$$
\text { Define } \mathrm{f}: \mathrm{V}\left(\mathrm{Q}_{3}\right) \rightarrow\{1,2,3, \ldots, 20\} \text { as follows: }
$$

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq 2 ; & \mathrm{f}\left(\mathrm{u}_{3}\right)=20 \\
\mathrm{f}\left(\mathrm{u}_{4}\right)=18 ; & \mathrm{f}\left(\mathrm{v}_{1}\right)=11 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-3,2 \leq \mathrm{i} \leq 3 ; & \mathrm{f}\left(\mathrm{v}_{4}\right)=16
\end{array}
$$

Then the induced edge labels are

$$
\begin{array}{ll}
\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=2 ; & \mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{u}_{\mathrm{i}+1}\right)=7 \mathrm{i}-2,2 \leq \mathrm{i} \leq 3 ; \\
\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{4}\right)=10 ; & \mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=8 ; \\
\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=6 \mathrm{i}-5, & 2 \leq \mathrm{i} \leq 3 ; \quad \mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{4}\right)=14 ; \\
\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=6 ; & \mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{v}_{2}\right)=4 ; \\
\mathrm{f}^{*}\left(\mathrm{u}_{3} \mathrm{v}_{3}\right)=15 ; \quad \mathrm{f}^{*}\left(\mathrm{u}_{4} \mathrm{v}_{4}\right)=17
\end{array}
$$

Clearly f is a super mean labeling of Q_{3}.
For example, a super mean labeling of Q_{3} is shown in Figure 11.

Figure 11
Theorem 2.3 Octahedron is a super mean graph.
Proof Let u_{1}, u_{2}, u_{3} and v_{1}, v_{2}, v_{3} be the vertices of the octahedron.

$$
\begin{aligned}
& \text { Define } \mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, 18\} \text { as follows: } \\
& \mathrm{f}\left(\mathrm{u}_{1}\right)=6 ; \\
& \mathrm{f}\left(\mathrm{u}_{3}\right)=13 ; \\
& \mathrm{f}\left(\mathrm{v}_{2}\right)=15 ; \quad \mathrm{f}\left(\mathrm{u}_{2}\right)=1 ; \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=3 ;
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i}+1, \quad 1 \leq \mathrm{i} \leq 2 ; \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{3}\right)=10 ; \\
& \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=8 \mathrm{i}+1,1 \leq \mathrm{i} \leq 2 ; \\
& \mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{3}\right)=11 ; \quad \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}+2,1 \leq \mathrm{i} \leq 2 ; \\
& \mathrm{f}^{*}\left(\mathrm{u}_{3} \mathrm{v}_{3}\right)=16 ; \quad \mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{u}_{2}\right)=2 ; \quad \mathrm{f}^{*}\left(\mathrm{v}_{2} \mathrm{u}_{3}\right)=14 ; \\
& \mathrm{f}^{*}\left(\mathrm{v}_{3} \mathrm{u}_{1}\right)=12 .
\end{aligned}
$$

Clearly f is a super mean labeling of the Octahedron.
For example, a super mean labeling of the Octahedron is shown in Figure 12.

Figure 12

Theorem 2.4 $T_{n}\left(C_{m}\right)$ is a super mean graph for $\mathrm{n} \geq 2$, $\mathrm{m} \geq 3, \mathrm{~m} \neq 4$.

Proof Let $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ be the vertices of C_{m} and u_{1}, $u_{2}, u_{3}, \ldots, u_{n} ; w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}$ be the vertices of T_{n}.
Then define g on $T_{n}\left(C_{m}\right)$ as follows:
Case 1 when m is even, $m=2 k, k=3,4,5, \ldots$

$$
\begin{aligned}
& \mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{m} ; \quad \mathrm{g}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{~m}+5 \mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{n} ; \\
& \mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{~m}+5 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}-1 .
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& \mathrm{g}^{*}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{m} ; \\
& \mathrm{g}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{~m}+5 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \\
& \mathrm{g}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{~W}=\right)=2 \mathrm{~m}+5 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \\
& \mathrm{g}^{*}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{~m}+5 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1 .
\end{aligned}
$$

Case 2 when m is odd, $\mathrm{m}=2 \mathrm{k}+1, \mathrm{k}=2,3,4, \ldots$

$$
\begin{aligned}
& \mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{m} ; \quad \mathrm{g}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{~m}+5 \mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{n} ; \\
& \mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{~m}+5 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}-1 .
\end{aligned}
$$

Then the induced edge labels are.

$$
\begin{aligned}
& \mathrm{g}^{*}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{m} ; \\
& \mathrm{g}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{~m}+5 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \\
& \mathrm{g}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{~m}+5 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{~g}^{*}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{~m}+5 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1 .
\end{aligned}
$$

Clearly g is a super mean labeling of $T_{n}\left(C_{m}\right)$.
For example, the super mean labelings of $\mathrm{T}_{5}\left(\mathrm{C}_{6}\right)$ and $\mathrm{T}_{5}\left(\mathrm{C}_{9}\right)$ are shown in Figure 13.

Figure 13
Theorem 2.5 If G is a super mean graph, then $\left(2 G, v_{1}, v_{2}\right)$ is a super mean graph.
Proof Let $u_{1}, u_{2}, u_{3}, u_{4}$ and $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices of G and $w_{1}, w_{2}, w_{3}, w_{4}$ and $x_{1}, x_{2}, x_{3}, x_{4}$ be the vertices of (2G, $\mathrm{V}_{1}, \mathrm{~V}_{2}$).

Then define g on $\left(2 G, v_{1}, v_{2}\right)$ as follows:

$$
\begin{aligned}
& \mathrm{g}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq 4 ; \quad \mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq 4 ; \\
& \mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{p}+\mathrm{q}-1,1 \leq \mathrm{i} \leq 4 ; \\
& \mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{p}+\mathrm{q}-1,1 \leq \mathrm{i} \leq 4 .
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& \mathrm{g}^{*}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq 4 ; \quad \mathrm{g}^{*}\left(\mathrm{e}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}\right), 1 \leq \mathrm{j} \leq 4 ; \\
& \mathrm{g}^{*}\left(\mathrm{e}_{\mathrm{k}}\right)=\mathrm{f}\left(\mathrm{e}_{\mathrm{k}}\right), 1 \leq \mathrm{k} \leq 4 ; \\
& \mathrm{g}^{*}\left(\mathrm{e}_{\mathrm{l}}\right)=\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)+\mathrm{p}+\mathrm{q}-1,1 \leq \mathrm{i}, 1 \leq 4 ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{g}^{*}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}\right)+\mathrm{p}+\mathrm{q}-1,1 \leq \mathrm{i}, \mathrm{j} \leq 4 \\
& \mathrm{~g}^{*}\left(\mathrm{z}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{e}_{\mathrm{k}}\right)+\mathrm{p}+\mathrm{q}-1,1 \leq \mathrm{i}, \mathrm{k} \leq 4
\end{aligned}
$$

Clearly g is a super mean labeling of $\left(2 G, v_{1}, v_{2}\right)$.
For example, a super mean labeling of $\left(2 Q_{3}, v_{1}, v_{2}\right)$ is shown in Figure 14.

[2] R. Balakrishnan and K. Ranganathan,
A Text Book of Graph Theory, Springer Verlag (2000).
[3] R. Ponraj and D. Ramya, Super Mean Labeling of Graphs, Preprint.
[4] R. Ponraj and D. Ramya, On Super mean graphs of order ≤ 5, Bulletin of Pure and Applied Sciences, (Section E Maths and Statistics) 25E(2006), 143-148.
[5] R. Ponraj and S. Somasundaram, Further results on mean graphs, Proceedings of Sacoeference, August 2005, 443 - 448.
[6] R. Ponraj and S. Somasundaram, Mean graphs obtained from mean graphs, Journal of Discrete Mathematical Sciences and Cryptography, 11 (2) (2008), 273 - 284.
[7] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science letter, 26 (2003), 210-213.
[8] S. Somasundaram and R. Ponraj, On mean graphs of order ≤ 5, Journal of Decision and Mathematical Sciences 9 (1-3) (2004), 48-58.
[9] D. Ramya, R. Ponraj and P. Jeyanthi, Super mean labeling of graphs, Ars Combinatoria, (To appear).
[10] R. Vasuki and A. Nagarajan, Some Results on
Figure 14 Super Mean Graphs, International Journal of Combin., Vol. 3(2009), 82-96.

ACKNOWLEDGEMENT

We would like to thank the reviewers for their valuable suggestions.

References

[1] Selvam Avadayappan and R. Vasuki, Some results on Mean Graphs, International Journal of Physical Sciences, 21 (M) (2009), 273-284.

